Photodiode C30817EH series

Silicon Avalanche Photodiode for General-Purpose Applications

The C30817EH is a general-purpose silicon avalanche photodiode made using a double-diffused "reach through" structure. This structure provides high responsivity between 400 to 1100 nanometers as well as fast rise and fall times at all wavelengths. Because the fall time characteristics had no "tail", the responsivity of the device is independent of modulation frequency up to about 200 MHz.

The C30817 is hermetically sealed behind a flat glass window in a modified low-profile TO-5 package.

The device is useful in a wide variety of applications including laser detection, ranging, optical communications, high-speed switch, and transit-time measurements.

Key Features

- High Quantum Efficiency 85% typical at 900nm 18% typical at 1060 nm
- Spectral Response range 400 to 1100nm
- Fast Time Response Rise time and Fall time typically 2ns
- Wide Operating Temperature Range

Applications

- Laser detection
- Ranging
- Optical communications
- High-speed switching
- Transit-time measurements

Photodiode C30817EH series

Silicon Avalanche Photodiode for General-Purpose Applications

Parameter	Symbol		Units	Remarks / Conditions	
Package		TO-5			
Photosensitive Surface:					
Useful area	А	0.5	mm²	Shape : Circular	
Useful diameter	d	0.8	mm		
Field of View:					
Nominal field of view α (see Figure 9)	FoV	119	Degrees		
Nominal field of view α' (see Figure 9)		132	_		

Table 2 – Electro-Optical Characteristics

Test conditions: Case temperature = 22°C, ; at the DC reverse operating voltage V, V_{op} supplied with device

Parameter	Symbol	Minimum	Typical	Maximum	Units
Breakage Voltage	V_{br}	300	375	475	v
Operating Voltage	V _{op}	275		425	
Temperature Coefficient of $V_{\mbox{\scriptsize op}}$ for Constant Gain			2.2		V/°C
Gain	М		120		
Responsivity at 900 nm at 1060 nm	R	65 15	75 18		A/W
Quantum Efficiency: at 900 nm at 1060 nm	Q.E.		85 18		%
Total Dark Current	I _d		50	200	nA
Noise Current f = 10 kHz Δf = 1 Hz; See Figure 5	i _n		1.0	2.0	pA/√Hz
Capacitance	C _d		2	4	pF
Series Resistance	R _s			15	Ω
Rise/Fall Time, R _L = 50Ω, λ = 900 nm: 10% to 90% points 90% to 10% points	t _r t _f		2	3	ns

Parameter	Symbol	Min.	Тур.	Max.	Units	Remarks / Conditions
Reverse Bias Dark Current				100	max. μA	
Photocurrent Density: average value peak value	J _p			5 20	mA/mm²	At 22 °C ; Continuous operation
Forward Current: average value peak value	I _F			5 50	max. mA	For 1 second duration, non- repetitive
Maximum Total Power				0.1	W	Dissipation at 22 °C
Operating Temperature	To	-40		70	°C	
Storage Temperature	T_{stg}	-60		100	°C	
Soldering				200	°C	5 seconds, leads only

Table 3 – Absolute – Maximum Ratings, Limiting Values

Figure 4 – Typical Dark Current as a function of Operating Voltage, V_{op}

Test conditions: Case temperature = 22°C

Figure 5 – Typical Noise Current as a function of Gain

Figure 6 – Typical Gain as a function of Light Spot Position

Test conditions: Case temperature = 22°C, Detector center = 0, Spot diameter= 0.0254 mm

Photodiode C30817EH series

Silicon Avalanche Photodiode for General-Purpose Applications

Figure 9 – Approximate field of view

For incident radiation at angles $\leq \alpha/2$, the photosensitive surface is totally illuminated. For incident radiation at angles $> \alpha/2$, but $\leq \alpha'/2$, the photosensitive surface is partially illuminated.

RoHS Compliance

The C30817EH is designed and built to be fully compliant with the European Union Directive 2011/65/EU – Restriction of the use of certain Hazardous Substances (RoHS) in Electrical and Electronic equipment.

Warranty

A standard 12-month warranty following shipment applies. Any warranty is null and void if the photodiode window has been opened.

About Excelitas Technologies

Excelitas Technologies is a global technology leader focused on delivering innovative, customized solutions to meet the lighting, detection and other high-performance technology needs of OEM customers.

Excelitas has a long and rich history of serving our OEM customer base with optoelectronic sensors and modules for more than 45 years beginning with PerkinElmer, EG&G, and RCA. The constant throughout has been our innovation and commitment to delivering the highest quality solutions to our customers worldwide.

From analytical instrumentation to clinical diagnostics, medical, industrial, safety and security, and aerospace and defense applications, Excelitas Technologies is committed to enabling our customers' success in their specialty end-markets. Excelitas Technologies has approximately 5,000 employees in North America, Europe and Asia, serving customers across the world.

Excelitas Technologies

22001 Dumberry Road Vaudreuil-Dorion, Quebec Canada J7V 8P7 Telephone: (+1) 450 424 3300 Toll-free: (+1) 800 775 6786 Fax: (+1) 450 424 3345 detection@excelitas.com Excelitas Technologies GmbH & Co. KG Wenzel-Jaksch-Str. 31 D-65199 Wiesbaden Germany Telephone: (+49) 611 492 430 Fax: (+49) 611 492 165 detection.europe@excelitas.com Excelitas Technologies Singapore, Pte. Ltd. 8 Tractor Road Singapore 627969 Telephone: (+65) 6775 2022 (Main number) Telephone: (+65) 6770 4366 (Customer Service) Fax: (+65) 6778-1752 detection.asia@excelitas.com

For a complete listing of our global offices, visit www.excelitas.com/locations

© 2016 Excelitas Technologies Corp. All rights reserved. The Excelitas logo and design are registered trademarks of Excelitas Technologies Corp. All other trademarks not owned by Excelitas Technologies or its subsidiaries that are depicted herein are the property of their respective owners. Excelitas reserves the right to change this document at any time without notice and disclaims liability for editorial, pictorial or typographical errors.