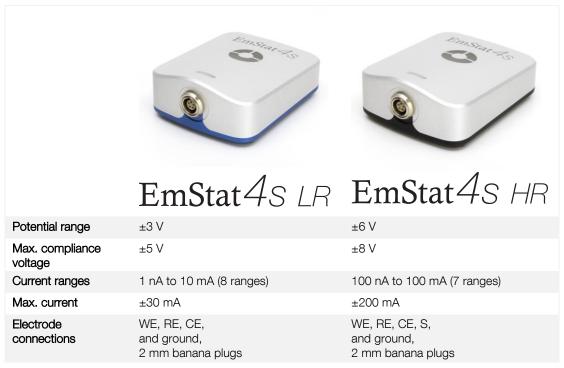
EmStat4S

POTENTIOSTAT / GALVANOSTAT / IMPEDANCE ANALYZER

Contents

Contents

Desktop performance in the palm of your hand	2
Supported Techniques	3
PSTrace: Software for Windows	4
EmStat4S Measurement Specifications	6
EmStat4S System Specifications	7
EmStat4S LR EIS Accuracy Contour Plot	9
EmStat4S HR EIS Accuracy Contour Plot	9
Standard EmStat4S Kit	10
FmStat4S works with MethodSCRIPT	11



Desktop performance in the palm of your hand

The EmStat4S is a portable USB-powered Potentiostat, Galvanostat, and optional Frequency Response Analyser (FRA) for Electrochemical Impedance Spectroscopy (EIS). The EmStat4S Low Range version is great for applications that require a low current range down to 1 nA, whereas the High Range version is very suitable for applications that need a maximum current of up to 200 mA.

Two versions for different applications

The EmStat4S is available in two versions: the LR (Low Range) and HR (High Range) versions. The following table shows the main differences:

Always a backup

The EmStat4S is equipped with internal storage memory. This means all your measurements can be saved on-board as a backup. All internally stored measurements can be browsed and transferred back to the PC easily using PSTrace.

Your data is always with your instrument wherever you take it.

Supported Techniques

Supported Techniques

The EmStat4S supports the following electrochemical techniques:

Voltammetric techniques

 Linear Sweep Voltammetry 		LSV
•	Cyclic Voltammetry	CV
	Fast Cyclic Voltammetry	FCV *
•	AC Voltammetry	ACV

Pulsed techniques

•	Differential Pulse Voltammetry	DPV
•	Square Wave Voltammetry	SWV
•	Normal Pulse Voltammetry	NPV

These methods can all be used in their stripping modes which are applied for (ultra-) trace analysis.

Amperometric techniques

•	Chronoamperometry	CA
 Zero Resistance Amperometry 		ZRA
•	Chronocoulometry	CC
 MultiStep Amperometry 		MA
	Fast Amperometry	FAM *
•	Pulsed Amperometric Detection	PAD
	Multiple-Pulse Amperometric Detection	MPAD

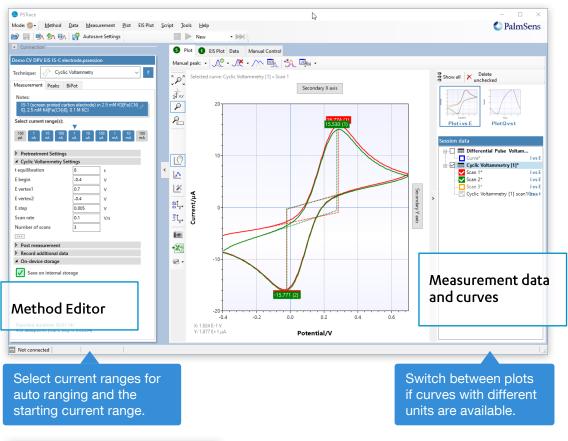
Galvanostatic techniques

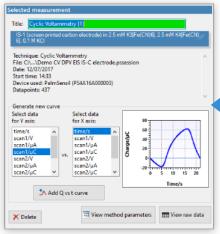
-	Linear Sweep Potentiometry	LSP
•	Chronopotentiometry	CP
•	MultiStep Potentiometry	MP
•	Open Circuit Potentiometry	OCP
	Stripping Chronopotentiometry	SCP or PSA *

Other

•	Mixed Mode	MM
•	Potentiostatic/Galvanostatic	
	Impedance spectroscopy	EIS/GEIS *
	o Potential scan or current scan	

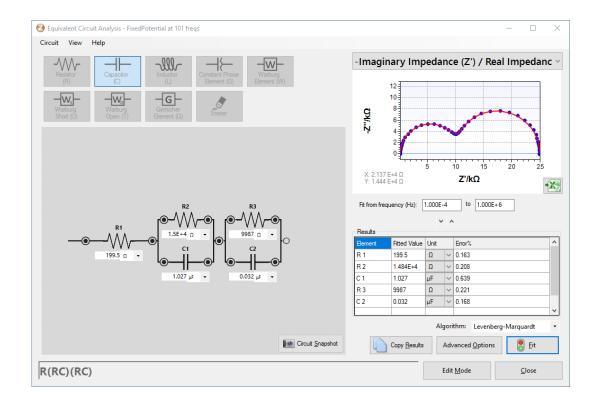
o Time scan


Fixed potential or fixed current



^{*} This technique will be enabled with the next software update due in October 2021.

PSTrace: Software for Windows



Click on a measurement in the legend to see the available data and to generate more curves.

Other functions in PSTrace 5

- Equivalent Circuit Fitting for EIS
- Automating tasks and measurements
- Open your data in Origin and Excel with one click
- Save all available curves, measurement data, and methods to a single file
- Browse measurements on EmStat4's internal storage
- Direct validation of method parameters

Integration with third-party software:

- Excel
- Origin
- Matlab
- ZView

System requirements

Minimum PC requirements are:

- Windows 7, 8, or 10 (32-bit or 64-bit)
- 1 GHz or faster 32-bit (x86) or 64-bit (x64) processor
- 1 GB RAM (32-bit) or 2 GB RAM (64-bit)

For more information about software visit www.palmsens.com/software

EmStat4S Measurement Specifications

EmStat4S Measurement Specifications

Limits for technique-specific parameters.

	Parameter	Min	Max		
All techniques	Conditioning time	0	4000 s		
(unless	Deposition time	0	4000 s		
otherwise specified)	Equilibration time	0	4000 s		
<i>вреотоа</i>	Step potential	LR: 0.100 mV HR: 0.183 mV	250 mV		
	Pulse potential	LR: 0.100 mV HR: 0.183 mV	250 mV		
	N data points	3	1,000,000		
NPV DPV	Scan rate	LR: 0.1 mV/s (100 μ V step) HR: 0.1 mV/s (183 μ V step)	1 V/s (5 mV step)		
	Pulse time	0.4 ms	300 ms		
SWV	Frequency	1 Hz	2500 Hz		
LSV CV	Scan rate	LR: 0.01 mV/s (100 μV step) HR: 0.01 mV/s (183 μV step)	500 V/s (200 mV step)		
PAD	Interval time	50 ms	300 s		
	Pulse time	1 ms	1 s		
	N data points		1,000,000 (> 100 days at 10 s interval)		
CA	Interval time	0.4 ms	300 s		
CP OCP	Run time	1 ms	> year		
OOF					
		potential or current levels:	00.000		
	N cycles N levels	1	20,000		
		•	255		
	Level switching overhead time	+/-1 ms			

EmStat4S System Specifications

EmStat4S System Specifications

General

	model	LR	HR
dc-potential range		±3 V	±6 V
compliance voltage		±5 V	±8 V
maximum current		±30 mA	±200 mA
max. data acquisition rate		1M samples/s	

Potentiostat (controlled potential mode)

, , ,			
	model	LR	HR
applied potential resolution		100 μV	183 μV
applied potential accuracy		\leq 0.2% ±1 mV offset	
current ranges		1 nA to 10 mA	100 nA to 100 mA
		8 ranges	7 ranges
measured current resolution		0.009% of CR (92 fA on ²	I nA range)
measured current accuracy		≤ 0.2% at Full Scale Rang	ge

Galvanostat (controlled current mode)

Galvariostat (Cortifolied Current Mode)			
	model	LR	HR
current ranges		10 nA, 1 uA, 100 uA, 10 mA 4 ranges	1 uA, 100 uA, 10 mA, 100 mA 4 ranges
applied dc-current		±3 * CR (current range)	
applied dc-current resolution		0.01% of CR	0.0183% of CR
applied dc-current accuracy		<0.4% (gain) + 0.002 * CR (offset)	<0.4% (gain) + 0.002 * CR (offset)
measured dc-potential resolution		96 μV (gain 1) 48 μV (gain 2) 19.2 μV (gain 5) 9.6 μV (gain 10) 4.8 μV (gain 20)	193 μV (gain 1) 96.5 μV (gain 2) 38.5 μV (gain 5) 19.3 μV (gain 10) 9.65 μV (gain 20)
measured dc-potential accuracy		≤ 0.2% ±1 mV offset	

FRA / EIS (impedance measurements)

frequency range	10 μHz to 200 kHz
ac-amplitude range	1 mV to 900 mV rms, or 2.5 V p-p

GEIS (galvanostatic impedance measurements)

frequency range	10 μHz to 200 kHz
ac-amplitude range	0.9 * CR A rms

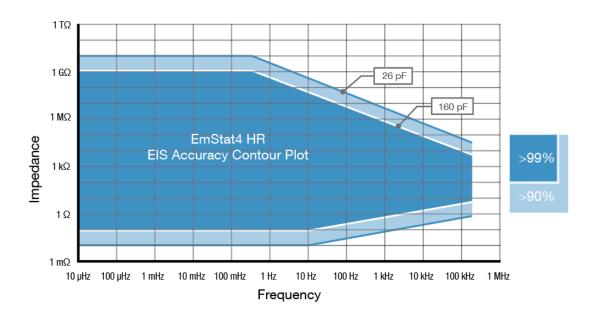
EmStat4S System Specifications

Electrometer

electrometer amplifier input	$>$ 1 T Ω // 10 pF
bandwidth	10 kHz default or 500 kHz for EIS and fast CA/CP

Other

Other				
	model	LR	HR	
electrode connections		WE, RE, CE, and ground, with 2 mm banana plugs	WE, RE, CE, S and ground, with 2 mm banana plugs	
housing		aluminum body: 7.2 x 5.5 x 2.6 cm ³		
weight		+/- 130 g		
power + communication		USB-C port		
internal storage space		500 MB, equivalent to >15M datapoints		



EmStat4S LR EIS Accuracy Contour Plot

EmStat4S LR EIS Accuracy Contour Plot

EmStat4S HR EIS Accuracy Contour Plot

Note

The accuracy contour plots were determined with an ac-amplitude of ≤10 mV rms for all limits, except for the high impedance limit, which was determined using an ac-amplitude of 250 mV. The standard cables were used. Please note that the true limits of an impedance measurement are influenced by all components in the system, e.g. connections, the environment, and the cell.

Standard EmStat4S Kit

Standard EmStat4S Kit

A standard EmStat4S includes a rugged carrying case with:

- EmStat4S LR or HR
- USB-C cable
- USB-C splitter cable for extra power (EmStat4S HR only)
- Sensor cable
- 4 or 5 croc clips
- Dummy Cell

Also included:

- PSTrace software for Windows (on USB drive)
- Manual (hardcopy)
- Quick Start document
- Calibration report

EmStat4S standard kit

EmStat4S works with MethodSCRIPT

The MethodSCRIPT™ scripting language is designed to integrate our OEM potentiostat (modules) effortlessly in your hardware setup or product.

No libraries needed

No DLLs or other type of code libraries are required for using MethodSCRIPT™

MethodSCRIPTTM allows developers to program a human-readable script directly into the potentiostat module. The simple script language allows for running all supported electrochemical techniques and makes it easy to combine different measurements and other tasks.

Code examples are available for:

- Android
- Arduino
- C/C++
- Python
- iOS
- and C#

More script features include:

- Use of variables
- (Nested) loops
- Logging results to internal storage or external SD card
- Digital I/O for example for waiting for an external trigger
- Reading auxiliary values like pH or temperature

More information

For more information about MethodSCRIPT visit www.palmsens.com/methodscript

MethodSCRIPT™

Please do not hesitate to contact PalmSens for more details: info@palmsens.com

PalmSens BV The Netherlands

www.palmsens.com

DISCLAIMER

Changes in specifications and typing errors preserved. Every effort has been made to ensure the accuracy of this document. However, no rights can be claimed by the contents of this document.

